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which is valid between the two walls. Figure 6.1 presents the wave function,
the probability density, and the energy spectrum. The lowest-lying state at E1,
called the ground state, has a finite energy Ey > 0, which implies a kinetic
energy Exin > O since the potential energy V is zero by construction. Already
this situation differs from that in classical mechanics, where the state of least
energy is of course the state of rest with E = Ekin = 0. The higher states
increase in energy proportionally to n2. The quantum number n is equal to one
plus the number of nodes of the wave function in the region —d /2 < x < d/2;
that is, the boundaries x = +d/2 are excluded. The wave function has even
or odd symmetry with respect to the point x = 0, depending on whether n is
odd or even, respectively. Even wave functions, here the cosine functions, are
said to possess even or natural parity, odd wave functions odd or unnatural
parity. Obviously, wave functions with an even number of nodes have even
parity, those with an odd number odd parity. This property also holds for other
one-dimensional potentials that are mirror-symmetric.

6.2 Particle Motion in a Deep Square Well

In Section 6.1 we found the spectrum of eigenvalues E, and the wave func-
tions describing the corresponding eigenstates gn (x) for the deep square well.
The solutions of the time-dependent Schrédinger equation are obtained by
multiplying ¢, (x) with a factor exp(—iE,t/ #). Through a suitable superposi-
tion of such time-dependent solutions, we form a moving wave packet which
at the initial time ¢ = 0 is bell shaped with a momentum average po. Its wave
function is

Y, 1) =Y an(po, X0)@n(x) €Xp [_%Ent] )
n=1

where the coefficients a,(po, Xo) have been chosen to ensure a bell shape
around location xg for t = 0 and the momentum average po.

Figure 6.2 shows the time development of the probability density | (x, 1) 12
for such a wave packet. We observe that for 7 = 0 the wave packet is well lo-
calized about initial position x¢ of the classical particle. It moves toward one
wall of the well, where it is reflected. Here it shows the pattern typical of in-
terference between incident and reflected waves. The pattern is very similar
to that caused by a free wave packet incident on a sharp potential step, shown
in Figure 5.2¢c. It continues to bounce between the two walls and is soon so
wide that the packet touches both walls simultaneously, showing interference
patterns at both walls.

It is interesting to see how the spatial probability density o (x, 1) de-
rived from a classical phase-space probability density behaves in time. This is
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Fig. 6.1. Bound states in an infinitely deep square well. The long-dash line indicates the
potential energy V (x). It vanishes for —d/2 < x < d/2 and is infinite elsewhere. Points
x = %d/2 are indicated as vertical walls. On the left side an energy scale is drawn, and to
the right of it the energies E,, of the lower-lying bound states are indicated by horizontal
lines. These lines are repeated as short-dash lines on the left. They serve as zero lines for
the wave functions ¢ (x) and the probability densities |¢(x)|? of the bound states.
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Fig. 6.2. Top: Time development of a wave packet moving in an infinitely deep square
well. At ¢ = 0, in the background, the smooth packet is well concentrated. Its initial
momentum makes it bounce back and forth between the two walls. The characteristic
interference pattern of the reflection process, as well as the dispersion of the packet
with time, is apparent. The small circle indicates the position of the corresponding
classical particle. The quantum-mechanical position expectation value is shown by a
small triangle. Bottom: Time development of the spatial probability density computed
from the classical phase-space distribution corresponding to the quantum-mechanical
wave packet.
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shown in the bottom part of Figure 6.2. As long as the bulk of the probability
density is not close to the walls the quantum-mechanical density |y (x, t)|?
and the classical density p°!(x, t) are very similar.

Near the walls, however, the quantum-mechanical wave packet displays
the interference pattern typical for the superposition of the two wave func-
tions incident on and reflected by the wall. As the packet disperses the inter-
ference pattern fills the whole well. No interference is observed in the time
development of the classical phase-space density. It is obtained as the sum

ol _ 1 ad _ (x —vpt — 2nd)2}
prlrt) = V2ro (1) n;oo {exp l: 202(1)
N [_ (x +vot — 2n + 1)d)2]
P 202(1)

with the time-dependent width of a free wave packet:

2
opt
ox(t) = ox0 1+( = )
\ OxoMm

by a simple generalization of the sum at the end of Section 5.2 from the re-
flection at one high potential wall to the repeated reflection between two high
walls.

We now want to study the quantum-mechanical wave packet in a deep
well over a much longer period of time. At the end of the time interval studied
in Figure 6.2 the quantum-mechanical probability density |1 (x, £)|? occupies
the full width of the well and one might be inclined to think that it continues to
do so. It is easy to see, however, that the quantum-mechanical wave function
¥ (x, ) must be periodic in time, the period being

2
Tl - )
w1

where w1 is the frequency of the ground-state wave function

Bk

Since all energies E,, n = 2,3, ..., are integer multiples of E, the period
Ty of the ground state is also the period of the superposition ¥ (x, t) that
describes the wave packet. Because of this periodicity in time the original
wave packet must be restored after the time 77 has elapsed. In Figure 6.3 we
show the time dependence of the same wave packet as in Figure 6.2 over a
full period 7 and find our expectation verified.
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Fig. 6.3. Time development of the same wave packet as in Figure 6.2 but observed of a
full revival period 7;. The time interval shown in Figure 6.2 is T, /60.

The periodicity is called revival of the wave packet. As we shall see in
Section 13.5, the phenomenon is also encountered in the wave-packet motion
in the Coulomb potential, e.g., in the hydrogen atom as an approximate re-
vival. To a larger or lesser degree it exists in all systems with discrete spectra
of reasonable spacing. In the case of the deep square well it is, however, an
exact revival.

In addition to the revival at t = T} we can also observe fractional revivals
at the times ¢t = (k/£)Ty. Here k and £ are integer numbers. Since in Figure 6.3
the time T is divided into 16 equal intervals it is easy to observe the packet
at the times t = T1/2, T1/4, T1/8, and T1/16. For these times the function
|% (x, £)|? consists of 1, 2, 4, and 8 well-separated “Gaussian” humps.

6.3 Spectrum of the Harmonic-Oscillator Potential

The particle in a deep square well experiences a force only when hitting the
wall. A simple, continuously acting force F (x) can be thought of as the force
of a spring, which follows Hooke’s law,

F(x) =—kx , k>0
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Fig. 6.1. Bound states in
an infinitely deep square well.
The long-dash line indicates
the potential energy V(z). It
vanishes for —d/2 < z <
d/2 and is infinite elsewhere.
Points = +d/2 are indicated
as vertical walls. On the left
side an energy scale is drawn,
and to the right of it the en-
ergies FE, of the lower-lying
bound states are indicated
by horizontal lines. These
lines are repeated as short-
dash lines on the left. They
serve as zero lines for the
wave functions ¢(z) and the
probability densities |p(2)|? of
the bound states.

From The Picture Book of Quantum Mechanics, S. Brandt and H.D. Dahmen, 3td ed., © 2001 by Springer-Verlag New York.



Fig. 6.2. Top: Time development of a wave packet moving in an infinitely deep square well. At
t =0, in the background, the smooth packet is well concentrated. Its initial momentum makes
it bounce back and forth between the two walls. The characteristic interference pattern of the
reflection process, as well as the dispersion of the packet with time, is apparent. The small
circle indicates the position of the corresponding classical particle. The quantum-mechanical
position expectation value is shown by a small triangle. Bottom: Time development of the
spatial probability density computed from the classical phase-space distribution corresponding
to the quantum-mechanical wave packet.

From The Picture Book of Quantum Mechanics, S. Brandt and H.D. Dahmen, 3Td ed., © 2001 by Springer-Verlag New York.



Fig. 6.3. Time development of the same wave packet as in Figure 6.2
but observed of a full revival period 7. The time interval shown in
Figure 6.2 is T} /60.

From The Picture Book of Quantum Mechanics, S. Brandt and H.D. Dahmen, 3td ed., © 2001 by Springer-Verlag New York.
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Fig. 6.10. Bound-state wave
functions and energy spec-
tra for square-well potentials
of different finite depths but
identical widths. The num-
ber of bound states increases
with the depth of the poten-
tial.

From The Picture Book of Quantum Mechanics, S. Brandt and H.D. Dahmen, 37d ed., © 2001 by Springer-Verlag New York.
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Fig. 6.11. Bound-state wave functions for square-well potentials of identical depth but different
widths. The number of bound states increases with the width of the well.

From The Picture Book of Quantum Mechanics, S. Brandt and H.D. Dahmen, 3td ed., © 2001 by Springer-Verlag New York.
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Fig. 6.12. Bound-state wave
functions and energy spec-
tra for systems of two square
wells. In one system the wells
are very close together, in the
other some distance apart.

From The Picture Book of Quantum Mechanics, S. Brandt and H.D. Dahmen, 3td ed., © 2001 by Springer-Verlag New York.
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Fig. 6.13. Bound-state wave functions and
energy spectra for a potential well and for
potentials consisting of two, three, four,
and five neighboring wells. The states have
very similar energies.

From The Picture Book of Quantum Mechanics, S. Brandt and H.D. Dahmen, 3td ed., © 2001 by Springer-Verlag New York.
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